Computing Optimal Discrete Morse Functions
نویسندگان
چکیده
The essential structural information of discrete Morse functions is captured by so-called Morse matchings. We show that computing optimal Morse matchings is NP-hard and give an integer programming formulation for the problem. Then we present first polyhedral results for the corresponding polytope and report on some preliminary computational results.
منابع مشابه
Constructing discrete Morse functions
Morse theory has been considered a powerful tool in its applications to computational topology, computer graphics and geometric modeling. It was originally formulated for smooth manifolds. Recently, Robin Forman formulated a version of this theory for discrete structures such as cell complexes. It opens up several categories of interesting objects (particularly meshes) to applications of Morse ...
متن کاملOptimal Morse functions and $H(\mathcal{M}^2, \mathbb{A})$ in $\tilde{O}(N)$ time
In this work, we design a nearly linear time discrete Morse theory based algorithm for computing homology groups of 2-manifolds, thereby establishing the fact that computing homology groups of 2-manifolds is remarkably easy. Unlike previous algorithms of similar flavor, our method works with coefficients from arbitrary abelian groups. Another advantage of our method lies in the fact that our al...
متن کاملComputing Persistent Homology via Discrete Morse Theory
This report provides theoretical justification for the use of discrete Morse theory for the computation of homology and persistent homology, an overview of the state of the art for the computation of discrete Morse matchings and motivation for an interest in these computations, particularly from the point of view of topological data analysis. Additionally, a new simulated annealing based method...
متن کاملHomological optimality in Discrete Morse Theory through chain homotopies
0167-8655/$ see front matter 2012 Published by doi:10.1016/j.patrec.2012.01.014 ⇑ Corresponding author. E-mail address: [email protected] (H. Molina-Abril). Morse theory is a fundamental tool for analyzing the geometry and topology of smooth manifolds. This tool was translated by Forman to discrete structures such as cell complexes, by using discrete Morse functions or equivalently gradient vector f...
متن کاملOptimal discrete Morse functions for 2-manifolds
Morse theory is a powerful tool in its applications to computational topology, computer graphics and geometric modeling. It was originally formulated for smooth manifolds. Recently, Robin Forman formulated a version of this theory for discrete structures such as cell complexes. It opens up several categories of interesting objects (particularly meshes) to applications of Morse theory. Once a Mo...
متن کامل